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The problem of the liquid-glass transformation continues to be a challenging one. It has been
recently tackled by several high-powered theories such as mode-mode coupling. By contrast, the
present model employs the intuitive picture of local orientational order in supercooled liquids and
combines this with a variant of the Maxwell model of viscoelasticity. The resulting dynamic the-
ory provides a simple scenario of how the viscosity of a supercooled liquid is enhanced due to its
tendency to order orientationally. An important by-product is an expression for the glass-transition
temperature in terms of the microscopic parameters of the theory, via which a connection with the
formal, spin-glass theoretical approach can be established. The model leads to expressions for the
dynamical modes in a supercooled liquid—quantities of direct experimental interest.

PACS number(s): 64.70.Pf, 64.70.Dv, 05.70.Fh, 64.60.Cn

I. INTRODUCTION

When a liquid is cooled adiabatically such that at every
stage it is in thermal equilibrium with the environment,
one obtains a crystalline solid. It is, however, not too
difficult to cool a liquid rapidly yielding a supercooled
phase. It is also quite easy to supercool a “computer”
liquid. A supercooled liquid may eventually be trapped
in a metastable state in which the nucleation rate ap-
proaches zero and the system appears frozen in a disor-
dered solid state on any macroscopic time scale of mea-
surement. This is often interpreted as a kind of con-
tinuous phase transition from liquid to glass [1]. The
quantity that dramatically changes on supercooling as
one approaches the glass transition is the viscosity. Its
value rises from about 10~2 P for ordinary liquids to
1012 — 10'3 P near a temperature Tg.

When a liquid is cooled at a finite rate wg down to Tg,
certain degrees of freedom of the system cannot relax to
equilibrium but are quenched in a high-temperature con-
figuration. Hence the glass transition is a nonequilibrium
phenomenon as manifested, for example, in the depen-
dence of T on wg and in the change of the single-particle
diffusive behavior from the Fickean to hoppinglike. As
a result, supercooled liquids “appear to be liquid” only
when probed at sufficiently low frequencies, but other-
wise show elastic response.

The freezing-out of the motion in certain regions of the
phase space makes the glass transition look somewhat
similar to the transition in spin-glass alloys [2]. This has
motivated the application of spin-glass theoretical tech-
niques, e.g., quenched averaging, the replica trick, etc.,
to the problem of the glass transformation [3-7]. How-
ever, a crucial fact distinguishes ordinary glasses from
spin glasses in that, unlike in the latter, there are no
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quenched impurities but certain “dynamically quenched”
fluctuations which are “self-trapped” over macroscopic
time scales. This view is supported by recent numeri-
cal investigations of apparent nonergodicity in ordinary
glass-forming binary liquids [8-10].

Recent theories of glass transitions are based either on
an atomistic level density-functional approach [11,12] or
the memory-function formulation [13, 14]. In the present
approach we adopt the idea of local orientational order
(LORO), due to Frenkel [15], and incorporate this into a
dynamic theory. In LORO theory a dense liquid possesses
local orientational order with high symmetries [16,17],
not necessarily corresponding to those space-filling sym-
metries associated with crystals, but akin to icosahedral
symmetries observed in quasicrystals [18]. The LORO
can be pictured in terms of a “cage,” which is a clus-
ter of atoms positioned at the vertices of, say, a Voronoi
polyhedron with the central atom at the origin whose
diffusivity is thus severely restricted [19,20]. A similar
description of a liquid had been used in the early days
of neutron-scattering experiments [21]. In a somewhat
obscure form, this picture is also implicit in the mode-
coupling approach [13], when the structural relaxations—
the o mode—are discussed.

The relevant information about the LORO is em-
bodied in higher-particle distribution functions, e.g.,
the four-particle distribution p4(r;,ra,rs,rs), for three-
dimensional systems with pairwise spherically symmet-
ric interactions [16,17]. How p4 is described in terms of
an orientational order parameter, a tensor of rank four
or higher, has been the subject of our earlier work [22],
henceforth refered to as I, and will be briefly reported in
Sec. II. In I we have shown that the coupling between the
local orientational variables and the deformation tensor
leads to an internal stress which physically captures the
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effect of the local misfit energy due to two misaligned
cages. Our objective in this paper is to analyze the influ-
ence this internal stress has on the viscoelastic properties
of a supercooled liquid [15]. To this end we introduce in
Sec. III the concept of a rheological stress. We find that
the tendency of the supercooled liquid to orientationally
order itself (but being less likely to do so as the nucle-
ation rate diminishes) leads to a large enhancement of the
viscosity, which actually shows up as a divergence in our
mean-field treatment [23]. This is discussed in Sec. IV.
The theory developed here allows us to analyze in Sec. V
the dynamical modes of the system, a necessary step to-
wards calculating the dynamic structure factor [24]. Fi-
nally, our main conclusions and results are summarized
in Sec. VI

II. ORIENTATION-STRAIN COUPLING

The principal idea presented in I was that the ba-
sic entities of the theory are multiparticle distribution
functions related to the probability of having at an ar-
bitrary point r in the liquid, a local triad of vectors h;
(¢ = 1,2,3). These vectors define the local coordinates
of a cage according to its orientation, and can be con-
structed in various ways, for example, by local Wigner-
Seitz (or Voronoi) construction [25]. In a sense it is the
averaged positions and orientations of the cage which are
our dynamically quenched variables alluded to earlier.
In accepting the notion of the cage we tacitly coarse-
grain the system, avoiding the mathematical complexity
of having to include short-wavelength modes in a proper
hydrodynamic description [14]. Thus the main object in
our theory should be the probability density p(r, {h;}).
For practical purposes this probability density can be
expanded into a proper set of irreducible tensors of rank
four or higher (Wigner matrices or similar) [19]. We shall
denote them as A“(r), for the cage located at position r;
A may stand for four or six indices in order to describe
cubic or icosahedral ordering, respectively [19,20]. As in
other LORO liquid-state theories and also lattice mod-
els, we write the liquid Hamiltonian (coarse-grained free
energy) as a quadratic functional of these tensors [26].
The orientational variables A“(r) are expected to couple
to the local distortions of the liquid, as in “compressible”
lattice models [27].

The considerations above yield the following form of
the free-energy functional describing orientation-strain
interactions [22]:

F{A, e} = 51175 / drdr'EYp(r — ')A (r)AB (')
+21W / drdr'G45 (r — v')A4 (r) AP (r')eap(r)
1
+W/dr0aﬁ—75€aﬁ(r)575(r)' @

The first term in Eq. (1) accounts for pure orientational
coupling between two cages centered at r and r’ with the
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strength EYg. This term is known, in mean-field the-
ory, to lead to a first-order phase transformation (when
A’s are treated, for example, as Potts variables) from
the (A) = 0 to the (A) # 0 phase. The second term is
the most crucial for our further analysis, for it describes
the coupling between the orientational degrees of freedom
and the local strain in the liquid, with the strength of in-
teraction given by the tensor Gég . Finally, the last term
accounts for the elastic energy in conventional elasticity
theories [28] in which C,pys are the elastic coefficients:

Coprys = Magbys + 1(6arybps + 6asbpy)- (2)

Note that the A and p are the bare Lame coefficients, the
measured ones being dressed by the coupling between the
fields A and e. Throughout Eq. (1) we adopt the sum-
mation convention for tensor indices and use the symbol
V for the volume of the system.

It is not customary to think in terms of a strain ten-
sor in the liquid phase, but a viscoelastic liquid for
which the cage concept is meaningful can be visualized
as an isotropic elastic medium over appreciably long time
scales. Thus if we were to employ equilibrium statistical
mechanics, Eq. (1) would lead to a mean value of the
strain in the liquid as in [22]:

(cas®) = 7 [ &' KagrsGAPAADAP @), (3

where K, p+s is the elastic compliance tensor (inverse of
Capys). Hence the thermodynamic value of the strain
would be zero in the “disordered” liquid phase (corre-
sponding to (A) = 0) unless there is finite correlation
between the cage orientations. The latter is a measure of
short-range orientational order reminiscent of magnetic
short-range order in an Ising paramagnet, that is to say,
A’s are like Ising spin variables, albeit much more com-
plicated in view of their geometrical nature, but there is
no conceptual difficulty in introducing them even in the
liquid phase. In I we demonstrated how the jump in (A)
and the A-A correlations of the type appearing in Eq. (3)
cause several macroscopic quantitites, e.g., the total vol-
ume, the heat capacity, and the elastic compliance to
change drastically as the liquid undergoes a transition to
an orientationally ordered phase.

As we argued earlier our main task is to construct a dy-
namic theory associated with the free-energy functional
in Eq. (1). Such a theory becomes unduly complex un-
less a certain simplified assumption concerning the ori-
entational degrees of freedom is adopted. The assump-
tion that captures the essential physics of the problem,
we believe, is the one in which the local cages are per-
mitted to have discrete orientations [19,20,22]. This al-
lows us to visualize A4 as a p-state Potts variable, where
A=1,2,...,p. We need not specify the value of p; suf-
fice it to note that even p = 3 is sufficient to account for
most of the salient features of the problem, at least in the
mean-field approximation [4,5]. Identifying the order pa-
rameter ¥(r) as that particular component of A4 which
points toward the axis along which the cages would like
to order, the free energy in Eq. (1) takes a simpler form:
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F{U, e} = — / dr dt' AE(r — v')U(x)(r')

v

+21W / dr dt' AGap(r — ©')eas(©)T(r)T(r)
1

457 [ e Capean(eers(s), @

where AE and AG refer to the differences in the energy
parameters between mutually parallel and perpendicular
orientations of the cages [22].

To write down a kinetic relaxation equation for the
orientational variables we imagine “orientational flips”
in much the same manner as “spin flips” in kinetic Ising
models [29,30]. These flips represent the reorientational
motion of the cages due to interactions with other degrees
of freedom. It is well known that in the linearized mean
field theory the relaxational equation in the wave-vector
space looks like [31]

¥(q,t) = —v(q)¥(a,?)
+i [ 4 AGaa(a) U, Dean(a — 1),
%)

The quantity v(q) is the rate of relaxation associated
with the pure orientational part of the free energy [viz.
the first term in Eq. (4)], 8 is the inverse temperature
in energy units, and 7 is a parameter which sets the ba-
sic time scale of the relaxational processes induced by
the heat bath; it is given a physical interpretation in
Sec. III below. While earlier we did not specify any def-
inite mechanism for this relaxation process, it is reason-
able to imagine it to be such that if one of the local cages
flips, the other must simultaneously undergo a reverse
flip, which corresponds to the picture of supercooled lig-
uids provided by computer simulations; see Ref. [17]. The
particles leave their cage and get to another, which af-
ter a short time of internal rearrangements becomes a
similar cage “pointing” in another “direction” leading to
conserved kinetics for the orientational order parameter
akin to the Kawasaki spin-exchange process in the kinetic
Ising model [32]. This implies that v(q) must vanish as
|a] — 0 with the leading-order term in q proportional to
q?. In fact, a mean-field analysis yields [33]

q2€2 To , To 2 o

va1) = NEE 1= D4 PR, ©)
where N is the number of nearest-neighbor cages, £ is the
mean separation between them, and Ty is the tempera-
ture at which the pure orientational order (no coupling
to the remaining degrees of freedom) would occur. The
quantity R is the typical range of interactions between
the cages described by AFE in Eq. (4).

The second term on the right-hand side of Eq. (5)
represents the effect of cage reorientation resulting from
the coupling to the translational degrees of freedom of
the cages represented by the fluctuating strain tensor
€ap(q,t). On the time scale over which this coupling
is relevant it is permissible to replace the strain ten-
sor by the (Hookean) stress tensor of the fluid, i.e.,
€ap = Kopys04s. Therefore we can rewrite Eq. (5) as
[34]

¥(q,t) = —v(a)¥(a:t)
+V£TKa/375 / dq'AGap(a)¥(d', 1)

xoqy6(a—d',t). (M)

III. VISCOELASTICITY

To establish a proper dynamical description of a su-
percooled liquid near T we develop a generalization
of the Maxwell model of viscoelasticity theory. Recall
that Maxwell constitutive relation interpolating between
solid- and liquidlike behavior reads [15, 35]

bas(t) = ~20ap(t) + Capratrs(?): (8)

The quantity 7, the Maxwell relaxation time, determines
the medium viscosity through the relation

Napys = TCapys - (9)

Taking the frequency Fourier transform of Eq. (8) we
have

Gap(w) = Napys(w)éys(w), (10)
where [36]
TwC,
To16(0) = T a

When the experimental probe frequency is much higher
than the inverse of the Maxwell time, wr > 1, we ob-
tain the stress-strain relation for a solid. For wr <« 1,
we observe viscous relaxation. In order to make the
concept of the Maxwell model applicable to a liquid we
shall work systematically in the wave-vector representa-
tion [24], thus 7 = 7(q).

Our strategy is to search for a mechanism that causes
an enhancement of the Maxwell time 7 so that the solid-
like behavior persists over longer experimental time scales
(i.e., smaller w) leading to an increase in 1 when one su-
percools a liquid. The crucial point in making a con-
nection between the Maxwell model and the formulation
based on Eq. (1) is the observation that the presence of
the local orientational order induces an internal stress
tensor [cf. Eq.(3)], the physical origin of which has been
discussed earlier:

o) = = / ' AGas(r — ¥)U(R)T().  (12)

Following the principle of superposition of stresses,
which implies that the total stress in the system is ad-
ditive, we have to replace the Maxwell constitutive rela-
tion, Eq. (8), by a generalized one which would lead to
the proper superposition of stresses in either the low- or
the high-frequency limit discussed earlier. To do so we
introduce the concept of a rheological stress s, a quan-
tity which measures the mismatch between the measured
stress in the system 0,3, and the static stress tensor de-
fined customarily as the functional derivative of the free
energy Eq. (1) with respect to the strain [37]:
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OF
beap’

Saf = OaB — (13)
Using the explicit form of F{¥, e} one easily finds that
Sqp is indeed the difference between the measured stress
and the internal stress given by Eq. (12) plus the elastic
stress given by §Fc1/6€qs-

When the local orientational degrees of freedom (the
cages) get ordered the flow of the medium has to stop;

thus we shall replace the Maxwell constitutive relation
by

_ 1 5.7:e1{6}
T(Q) 660:6

The relaxation time 7(q) in Eq. (14) is the main, bare
time scale of all the relevant relaxation processes in our
model. Therefore 7(q) has to be identified with the relax-
ation time [i.e., 1/v(q)] associated with the bare kinetics
of the local orientational order parameter ¥(q), Eq. (7).

Equation (14) is a constitutive relation, the use of
which is not restricted to our current analysis. It can be
employed in modeling other physical phenomena wherein
the stress tensor is split in a natural way into two parts
describing the long-wavelength behavior, and the other
describing the short-wavelength behavior, for example, in
the theory of coupling between accustic waves and ther-
mal phonons [38].

It is convenient to rewrite Eq. (14) in terms of the
measured stress, the internal stress, and the rate of strain
tensor, thus

R 1
Sap + WSQQ = (14)

d .
Et‘ [Uaﬁ(qa t) - U:%(qv t)]

int

+-7%Q) [Uaﬁ(q, t) - Uaﬂ(q, t)] = Caﬁ’ﬂsé‘ﬂs' (15)

In the absence of the internal stresses Eq. (15) reduces
to the Maxwell constitutive relation Eq. (8) and it gen-
eralizes the constitutive equation proposed in Ref. [23].
To check that Eq. (15) leads to the required superpo-
sition of stresses for any frequency take the time Fourier

transform of it leading to
1
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twT(q)

~ _ ~int
Fap(@w) = Fap(aw) + 77 iwr(qQ)

Ca,@‘Y&g“/&(qa w) .

(16)

For high frequencies Eq. (16) gives us solidlike stress su-
perposition, i.e., ¢ = o™ +¢°!, and the rheological stress
Sqop vanishes. For low frequencies we obtain fluidlike be-
havior in which the rheological stress cancels the elastic
contribution yielding

Gap = F0p + iWwiapys(Q)Eap, (17)
where we have used the obvious generalization of the def-
inition of viscosity from Eq. (9). As we shall show in
what follows, the bare viscosity is renormalized due to
the coupling with the orientational degrees of freedom
in a fashion characteristic of the viscosity enhancement
associated with the glass transformation.

IV. ORIENTATION CUM STRESS
RELAXATION

We are now geared to investigate the coupling between
the local orientational order and the remaining degrees of
freedom in the system using the generalized viscoelastic
model developed in Sec. ITI. At the outset we note that
we will be interested primarily in the slow relaxational
motion in the system; thus, for the time being, we shall
not analyze the dynamic equation of motion for the cur-
rent, but concentrate on the analysis of the constitutive
relation. The dynamic equation for the orientational or-
der parameter ¥(r) reads [cf. Eq. (7)]

¥(q,t) = —v(q)¥(q,t)
+ 2 / ddAG(@)U(d, o(a—dyt),  (18)
7o

where we have dropped all the tensorial indices. In
Eq. (18) we have used the definition of the bare viscosity
Eq. (9), viz. 1/no = K/T =1/7C.

Solving Eq.(18) and substituting it into the definition
of the internal stress we obtain

o't (q,t) = %/dq'AG(q’) /dq”/ dt’ exp[—A(q,d’,t — t')]AG(q")¥(q",t')
x[¥(q—dq,t)o(d —q",t') +¥(d,t")o(a—q —q",t)], (19)

with the initial condition o'*(q,t = 0) = 0. For an
interpretation of this particular initial condition, see the
last paragraph of this section. In Eq. (19)

Ma,q') =v(q) +v(q—q). (20)

Our aim now is to substitute Eq. (19) into Eq. (15) and
consider the resulting equation, with an appropriate noise
term added, as the Langevin equation for the stress ten-
sor. For our purposes it is sufficient to calculate the av-
eraged value of the stress tensor over the statistics of the
noise. While carrying out this average (denoted by angu-
lar brackets) we encounter triple correlation functions of

f

the sort (¥(q’,¢)¥(q”,t')o(q—q’—q”,t')). In handling
these we make a random-phase-like decoupling resulting
in

(¥(d,t)¥(q",t"Yo(a—d —q",t'))

=(9(d,t")¥(q",t') (o(a—d —q",t)). (21)

Now, noting that the orientational order correlation func-
tion in Eq. (21) is an equal-time correlation and that the
underlying stochastic process is assumed stationary and
the system translationally invariant, we have
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(2(d,t)¥(q",t) ) = (¥(q)¥(q") )o(a+q")
= x(a)6(a’ +4q"), (22)
where x(q) is the “susceptibility” associated with the
orientational order. Using now Egs. (21) and (22), and
substituting them into Eq. (19), we obtain the following

expression for the averaged value of the internal stress
tensor {o'™t):

(O'int(q,t» - '6/0 dt/F(q,t - t’)(o’(q, tl)>, (23)

where the memory kernel F'(q,t) is given by

F(q,t) = n—lo / dq'x(d')AG(—q') exp[-tA(q,q')]
x[AG(d') + AG(q - q')]. (24)

Having this we may now solve Eq. (15) for the stress
tensor using Laplace transforms. We obtain

(@
(1 +27(q)(1 — BF(q,2)]
x[2C(&(q, 2)) — C{e(q,t = 0))

(6(aq,2)) =

+<U(q) t= 0))]’ (25)
where
F(q,2)
_ 1 X(@)AG(—q) [AG(d') + AG(q — q')]
_%/dq z+Xq,q') '
(26)

Equation (25) can be cast in a form exhibiting the renor-
malized Maxwell relaxation time 7.g(q, 2) as

-7
1_ﬂﬁ(q,z)

In order to examine consequences of the renormalization
of the relaxation time given by Eq. (27), it is instructive
to rewrite Eq. (25) as

Teff(q, 2) = (27

. 1 Tef(Q, 2)
(6(a,2)) = D(q,2z) 1+ :Teff(q, z)
X [ZC<€(q? Z)) - C<€(q’ t= 0)>
+(o(a,t = 0))], (28)
where
D(a,?) =1~ prE ) fiq, o) (29)

Equation (27) is the main result of this section, which
shows that within our mean-field-like analysis of coupled
kinetics of the local orientational order and the stress in
the viscoelastic regime, the generalized relaxation time
diverges at the temperature T when

1—BF(q,2) =0. (30)

The relaxation processes under consideration are
clearly important for low frequencies; in that regime
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the memory function F is essentially z independent.
Equation (28) can now be analyzed in the limits when
27ei(q, 2 = 0) > 1 or z7eg(q,z = 0) < 1. The former
applies when the temperature approaches the glass tran-
sition temperature defined by Eq. (27). In that case
Eq. (28) describes the elastic response of the medium
with the elastic coefficients enhanced by the factor 1/(1—
BE). In the low-frequency limit, Eq. (28) gives us the
typical viscous stress-strain relation with the viscosity
given by

ot ____ ™
1—ﬂF(q,Z) 1—ﬂF(q,z)’

which can also be obtained using the Maxwell relation
between the elastic coefficient and the viscosity. We con-
clude therefore that the rheological constitutive relation
together with the kinetic model for the orientational de-
grees of freedom provide the necessary input to construct
a kinetic theory for the liquid-glass transition.

Equation (30) immediately permits us to define the
glass-transition temperature T as the one at which the
zero-frequency long-wavelength component of the viscos-
ity diverges. Hence

1 / dq,x(Tc)AG(—q’) [AG(d') + AG(=q)]

¢~ ks A(0,d,Tg) '
(32)

n(q,z) = (31)

where, following Eq.(20), A(0,q’) = v(q') + v(—q') .
Equation (32) simplifies for systems with inversion
symmetries, in which case

_ x(q, T6)[AG(q)]?
Te = /dq v(q,Tg) '

The result (33) deserves close attention. The relaxation
time 1/v(q), as defined in Eq. (6), depends on two tem-
peratures T and Tp, the latter being a transition temper-
ature for pure orienational model. The point is that one
reaches Tg before reaching Tp. Combining now Eq. (32)
with Eq. (6) we obtain an expression for the T in terms
of the microscopic parameters of the model:

1 x(q, Ta)[AG(q)]?
Te = Nkpno&? /dq

1-— % + %quz
This result, which follows from the present dynamical
theory, should now be compared with that obtained from
the theory of glass transition based on a spin-glass theory
framework [5]. It was shown in Ref. [5] that the glass-
transition temperature T is proportional to the variance
of the quenched disorder arising from the assumption
that the coupling coefficients Gop in the free-energy func-
tional Eq. (1), hence also AG’s in Eq. (4) have fluctuat-
ing contributions. Although it is not possible to directly
relate the various averages over the quenched disorder ap-
pearing in Ref. [5] with our more microscopic variables,
the structure of both expressions for T turns out to
be very similar. Indeed the right-hand side of Eq. (34)
contains the square of the coupling coefficient between
the orientational and elastic degrees of freedom and it is

(33)

(34)
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tempting to identify this expression with the variance of
quenched fluctuations (cf. Ref. [5]). This analogy can be
further substantiated by noting that the assumed vanish-
ing of the initial value of the internal stress tensor can
be related to vanishing of AG(q), averaged in the sense
of Ref. [5].

At this stage it may be pertinent to enquire about
the role of the rate of cooling wg in the theory. This
question is admittedly a difficult one to answer satisfac-
torily, but we can nevertheless offer some speculation.
When wq is finite the particles of the liquid do not have
time to adjust to their equilibrium positions, and hence
it is not unreasonable to expect that the strength of the
orientation-dependent interaction between cages should
depend on wg. As the quantities occurring under the
integral in Eq. (34) all depend on this interaction, it is
evident that the glass-transition temperature T would
indeed be a function of the rate of cooling wq.

In the following section we shall return to a discus-
sion of the model and show how the enhancement of the
viscosity predicted by Eq. (27) modifies standard expres-
sions for measured quantities, such as longitudinal cur-
rent correlation function and the dynamic structure fac-
tor.

V. DYNAMIC MODES

To study the consequences of the interplay between the
local orientational order and the viscoelasticity on the
hydrodynamic modes of the system we begin by writing
down the usual set of conservation laws for the density
and momentum in the wave-vector space as

17} . oo
Egp(q,t)-—zq 7i%(q,t),
(35)

0 .4 .
5@ t) = ig°TI*#(q, t),

where p is the fluid density, j* is particle current, and
II1%8 is the total stress tensor in the liquid containing
hydrostatic pressure —p(p)§%? and the kinematic aﬁ‘fl =
pj®3P terms. In what follows we shall be interested in
linearized hydrodynamics, therefore we shall neglect okin
(the so-called convective terms). Furthermore, we shall
now linearize Eqgs. (35) around p = pg + 6p, po being the
uniform fluid density. Using p(p) = po + (8p/8p)ybp =
po + kTép, where kT is the isothermal compressibility,
and including the stress tensor of Sec. III in Il,g, we
obtain

5] .
§6p(q, t) =1¢aja(q,t),
(36)
0 . ; a a
3 *(q,t) = ig® {kr6*Psp(q,t) + c**(q,t)} .

Taking the Laplace transform with respect to the time
variable, we have

KT . ~
27*(q, 2) + 7(1"‘(1"5" (a,2) — ig?5*#(q, 2)

= j%(q,0) + ikrq®6p(q,0). (37)

In order to analyze Egs. (35) we shall use for ¢®° the
rheological constitutive equation from Sec. III, namely
Eq. (15). We should emphasize that all the hydrody-
namic quantities appearing in this section are identified
with the averaged values in the sense of Sec. IV. Thus
from Egs. (14) and (25)

1 Teff(Q: Z)

%8 (q, z) =
(@2) D(q,2) 1 + Test(q, 2)
X{Oaﬁ’YG[zé’Yﬁ(q, Z) - 675(q7 t= 0)]
+0°?(q,t = 0)}. (38)
On the other hand, recall that in the linearized theory
*f(q,t) = (1/2p0)i(¢%5” + 4°5), (39)

Combining Eqgs. (38) and (39), and substituting in
Eq. (37), we obtain the matrix equation for the current:

G*%(q,2)7(q,2) = f*(q, 2), (40)
where

G*P(q,2) = [ 226*° + krq®q®

27ei(Q,2) C*P78q7¢°

1+ ZTeff(q’ z) pO-D(q1 Z)

] (41)
and
f*(a,2) = Z[ 7%(q,0) + ikTq*6p(q,0)

0*(q, 0)q”
D(a.2) ] (42

As is evident from Eq. (42) the right-hand side of Eq. (40)
contains the initial values of all the relevant quantities.

Equation (40) is the central result of this section. The
poles of the matrix G™, 2 = 2(q) determine the hy-
drodynamic modes of the system. Note that j.(q, z)
determines the relaxation of the macroscopic current,
with an arbitrary initial condition. Hence, by the On-
sager regression hypothesis, the long time decay of the
long-wavelength component of equilibrium current fluc-
tuations, described by the correlation function J(q, 2),
is also governed by the matrix G—1.

Consider first the high-frequency regime discussed in
Sec. IV. In that limit the matrix G simplifies and one ob-
tains the usual expression for the dynamical matrix of an
elastic medium with enhanced elastic coefficients. Indeed
using the expression for the elastic coefficient tensor of
an isotropic medium Eq. (2), one obtains expressions for
the frequencies of the longitudinal and transverse waves

1 /\+2/,1.>
= + — | — ’
“I q\/”T P0 (1 _BF

1
Wi = —_— —.
TN o1 BF

Note the occurrence of the denominator 1—8F in Eq. (43)

27eft(q, 2)
1+ zTeﬂ'(qv Z)

(43)
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indicating an increase of the rigidity of the supercooled
liquid when the temperature approaches T¢.

In the opposite limit of low frequencies the system dy-
namics becomes fluidlike with enhanced viscosity. For an
interesting case of transverse waves we obtain

2770~
1—BF’

the imaginary 4 indicating the diffusive character of these
modes.

In a similar fashion we can write down expressions
for the longitudinal and transverse current correlation
functions, which appear to be essentially the same as in
Ref. [24], provided the values of the elastic coefficients
and the viscosities are modified by the correlations due
to coupling to the local orientational degrees of freedom
in the manner described above.

wy = —ig (44)

VI. CONCLUSIONS

The mean-field analysis of the combined viscoelastic-
ity and local orientational order presented in the pre-
ceding sections shows how the kinetic effects associated
with the orientational ordering in the supercooled lig-
uid lead to enhancement of the fluid viscosity and the
elastic moduli of the system as the glass transition is ap-
proached from above. The crucial role in the model is
played by the renormalized Maxwell relaxation time 7eg
given by Eq. (27). The fact that 7eg increases when one
approaches the glass-transition temperature implies that
the viscous behavior of the system would be observed
only after waiting for a time much longer than in the
“high-” temperature fluid, for example, near the triple
point. The enhancement of the Maxwell time explains
why one can use a crude model of the glass in which the
translational degrees of freedom of the system are treated
as in an elastic medium. Our results also show that the
sluggishness of the system manifests itself in the increase
in both viscosity and elastic moduli as one approaches
Tc.

The mean-field analysis presented here suffers from
several shortcomings. For example, it predicts the di-
vergence of the relaxation time at the transition. A
more refined analysis would remove this defect of the-
ory, though at the expense of considerable calculational
complexity which, we believe, will not add much to the
perceived physical picture. Also our model analysis pre-

dicts an identical rate of increase of the viscosity and
the Maxwell time, when one approaches Tg. This result
also will be modified in a more refined treatment. Recall
how a considerable “background” viscosity arises in the
mode-coupling theory of a liquid near the critical point.

The glass transition is often thought to be essentially
kinetic in nature. In view of this it is indeed consistent
that the transition temperature predicted by our present
model, viz. Eq. (34), correlates with the previous result
for the glass-transition temperature obtained by the use
of the spin-glass theory [5]. The quenched averages and
replica tricks were used in Ref. [5] to mimic the nonequi-
librium nature of the glass transformation. In the present
approach this is achieved by proposing a fully dynamic
model with specific kinetics of the local orientational or-
der parameter.

The important ingredient of our model is the concept
of the rheological stress, Eq. (13), and the rheological
constitutive relation, Eq. (14). We believe that these
concepts have a much wider application than envisaged
in the present treatment. The rheological stress can also
be used in analyzing the properties of such systems for
which a clear classiffication of different groups of degrees
of freedom can be made based on the considerations of
space-time and “internal” symmetries. The possible ex-
amples that immediately come to mind are compressible
magnetic systems, polymers, deformable dielectrics, etc.
in which our ideas can be tested.
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